ELKstack 中文指南
  • ELKstack 中文指南
  • Logstash
    • 入门示例
      • 下载安装
      • hello world
      • 配置语法
      • plugin的安装
      • 长期运行
    • 插件配置
      • input配置
        • file
        • stdin
        • syslog
        • tcp
      • codec配置
        • json
        • multiline
        • collectd
        • netflow
      • filter配置
        • date
        • grok
        • dissect
        • geoip
        • json
        • kv
        • metrics
        • mutate
        • ruby
        • split
        • elapsed
      • output配置
        • elasticsearch
        • email
        • exec
        • file
        • nagios
        • statsd
        • stdout
        • tcp
        • hdfs
    • 场景示例
      • nginx访问日志
      • nginx错误日志
      • postfix日志
      • ossec日志
      • windows系统日志
      • Java日志
      • MySQL慢查询日志
    • 性能与测试
      • generator方式
      • 监控方案
        • logstash-input-heartbeat方式
        • jmx启动参数方式
        • API方式
    • 扩展方案
      • 通过redis传输
      • 通过kafka传输
      • AIX 平台上的logstash-forwarder-java
      • rsyslog
      • nxlog
      • heka
      • fluent
      • Message::Passing
    • 源码解析
      • pipeline流程
      • Event的生成
    • 插件开发
      • utmp插件示例
  • Beats
    • filebeat
    • packetbeat网络流量分析
    • metricbeat
    • winlogbeat
  • ElasticSearch
    • 架构原理
      • segment、buffer和translog对实时性的影响
      • segment merge对写入性能的影响
      • routing和replica的读写过程
      • shard的allocate控制
      • 自动发现的配置
    • 接口使用示例
      • 增删改查操作
      • 搜索请求
      • Painless脚本
      • reindex接口
    • 性能优化
      • bulk提交
      • gateway配置
      • 集群状态维护
      • 缓存
      • fielddata
      • curator工具
      • profile接口
    • rally测试方案
    • 多集群互联
    • 别名的应用
    • 映射与模板的定制
    • puppet-elasticsearch模块的使用
    • 计划内停机升级的操作流程
    • 镜像备份
    • rollover和shrink
    • Ingest节点
    • Hadoop 集成
      • spark streaming交互
    • 权限管理
      • Shield
      • Search-Guard 在 Elasticsearch 2.x 上的运用
    • 监控方案
      • 监控相关接口
        • 集群健康状态
        • 节点状态
        • 索引状态
        • 任务管理
        • cat 接口的命令行使用
      • 日志记录
      • 实时bigdesk方案
      • cerebro
      • zabbix trapper方案
    • ES在运维监控领域的其他玩法
      • percolator接口
      • watcher报警
      • ElastAlert
      • 时序数据库
      • Grafana
      • juttle
      • Etsy的Kale异常检测
  • Kibana 5
    • 安装、配置和运行
    • 生产环境部署
    • discover功能
    • 各visualize功能
      • area
      • table
      • line
      • markdown
      • metric
      • pie
      • tile map
      • vertical bar
    • dashboard功能
    • timelion 介绍
    • console 介绍
    • setting功能
    • 常用sub agg示例
      • 函数堆栈链分析
      • 分图统计
      • TopN的时序趋势图
      • 响应时间的百分占比趋势图
      • 响应时间的概率分布在不同时段的相似度对比
    • 源码解析
      • .kibana索引的数据结构
      • 主页入口
      • discover解析
      • visualize解析
      • dashboard解析
    • 插件
      • 可视化开发示例
      • 后端开发示例
      • 完整app开发示例
    • Kibana报表
  • 竞品对比
  • 推荐阅读
  • 合作名单
  • 捐赠名单
Powered by GitBook
On this page

Was this helpful?

  1. ElasticSearch

计划内停机升级的操作流程

Elasticsearch 作为一个新兴项目,版本更新非常快。而且每次版本更新都或多或少带有一些重要的性能优化、稳定性提升等特性。可以说,ES 集群的版本升级,是目前 ES 运维必然要做的一项工作。

按照 ES 官方设计,有 restart upgrade 和 rolling upgrade 两种可选的升级方式。对于 1.0 版本以上的用户,推荐采用 rolling upgreade 方式。

但是,对于主要负载是数据写入的 Elastic Stack 场景来说,却并不是这样!

rolling upgrade 的步骤大致如下:

  1. 暂停分片分配;

  2. 单节点下线升级重启;

  3. 开启分片分配;

  4. 等待集群状态变绿后继续上述步骤。

实际运行中,步骤 2 的 ES 单节点从 restart 到加入集群,大概要 100s 左右的时间。也就是说,这 100s 内,该节点上的所有分片都是 unassigned 状态。而按照 Elasticsearch 的设计,数据写入需要至少达到 replica/2+1 个分片完成才能算完成。也就意味着你所有索引都必须至少有 1 个以上副本分片开启。

但事实上,很多日志场景,由于写入性能上的要求要高于数据可靠性的要求,大家普遍减小了副本数量,甚至直接关掉副本复制。这样一来,整个 rolling upgrade 期间,数据写入就会受到严重影响,完全丧失了 rolling 的必要性。

其次,步骤 3 中的 ES 分片均衡过程中,由于 ES 的副本分片数据都需要从主分片走网络复制重新传输一次,而由于重启,新升级的节点上的分片肯定全是副本分片(除非压根没副本)。在数据量较大的情况下,这个步骤耗时可能是几十分钟甚至以小时计。而且并发和限速上稍微不注意,可能导致分片均衡的带宽直接占满网卡,正常写入也还是受到影响。

所以,对于写入压力较大,数据可靠性要求偏低的实时日志场景,依然建议大家进行主动停机式的 restart upgrade。

restart upgrade 的步骤如下:

  1. 首先适当加大集群的数据恢复和分片均衡并发度以及磁盘限速:

# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
  "persistent" : {
    "cluster" : {
      "routing" : {
        "allocation" : {
          "disable_allocation" : "false",
          "cluster_concurrent_rebalance" : "5",
          "node_concurrent_recoveries" : "5",
          "enable" : "all"
        }
      }
    },
    "indices" : {
      "recovery" : {
        "concurrent_streams" : "30",
        "max_bytes_per_sec" : "2gb"
      }
    }
  },
  "transient" : {
    "cluster" : {
      "routing" : {
        "allocation" : {
          "enable" : "all"
        }
      }
    }
  }
}'
  1. 暂停分片分配:

# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
  "transient" : {
    "cluster.routing.allocation.enable" : "none"
  }
}'
  1. 通过配置管理工具下发新版本软件包。

  2. 公告周知后,停止数据写入进程(即 logstash indexer 等)

  3. 如果使用 Elasticsearch 1.6 版本以上,可以手动运行一次 synced flush,同步副本分片的 commit id,缩小恢复时的网络传输带宽:

# curl -XPOST http://127.0.0.1:9200/_flush/synced
  1. 全集群统一停止进程,更新软件包,重新启动。

  2. 等待各节点都加入到集群以后,恢复分片分配:

# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
  "transient" : {
    "cluster.routing.allocation.enable" : "all"
  }
}'

由于同时启停,主分片几乎可以同时本地恢复,整个集群从 red 变成 yellow 只需要 2 分钟左右。而后的副本分片,如果有 synced flush,同样本地恢复,否则网络恢复总耗时,视数据大小而定,会明显大于单节点恢复的耗时。

  1. 如果有 synced flush,建议等待集群变成 green 状态后,恢复写入;否则在集群变成 yellow 状态之后,即可着手开始恢复数据写入进程。

Previouspuppet-elasticsearch模块的使用Next镜像备份

Last updated 5 years ago

Was this helpful?