ELKstack 中文指南
  • ELKstack 中文指南
  • Logstash
    • 入门示例
      • 下载安装
      • hello world
      • 配置语法
      • plugin的安装
      • 长期运行
    • 插件配置
      • input配置
        • file
        • stdin
        • syslog
        • tcp
      • codec配置
        • json
        • multiline
        • collectd
        • netflow
      • filter配置
        • date
        • grok
        • dissect
        • geoip
        • json
        • kv
        • metrics
        • mutate
        • ruby
        • split
        • elapsed
      • output配置
        • elasticsearch
        • email
        • exec
        • file
        • nagios
        • statsd
        • stdout
        • tcp
        • hdfs
    • 场景示例
      • nginx访问日志
      • nginx错误日志
      • postfix日志
      • ossec日志
      • windows系统日志
      • Java日志
      • MySQL慢查询日志
    • 性能与测试
      • generator方式
      • 监控方案
        • logstash-input-heartbeat方式
        • jmx启动参数方式
        • API方式
    • 扩展方案
      • 通过redis传输
      • 通过kafka传输
      • AIX 平台上的logstash-forwarder-java
      • rsyslog
      • nxlog
      • heka
      • fluent
      • Message::Passing
    • 源码解析
      • pipeline流程
      • Event的生成
    • 插件开发
      • utmp插件示例
  • Beats
    • filebeat
    • packetbeat网络流量分析
    • metricbeat
    • winlogbeat
  • ElasticSearch
    • 架构原理
      • segment、buffer和translog对实时性的影响
      • segment merge对写入性能的影响
      • routing和replica的读写过程
      • shard的allocate控制
      • 自动发现的配置
    • 接口使用示例
      • 增删改查操作
      • 搜索请求
      • Painless脚本
      • reindex接口
    • 性能优化
      • bulk提交
      • gateway配置
      • 集群状态维护
      • 缓存
      • fielddata
      • curator工具
      • profile接口
    • rally测试方案
    • 多集群互联
    • 别名的应用
    • 映射与模板的定制
    • puppet-elasticsearch模块的使用
    • 计划内停机升级的操作流程
    • 镜像备份
    • rollover和shrink
    • Ingest节点
    • Hadoop 集成
      • spark streaming交互
    • 权限管理
      • Shield
      • Search-Guard 在 Elasticsearch 2.x 上的运用
    • 监控方案
      • 监控相关接口
        • 集群健康状态
        • 节点状态
        • 索引状态
        • 任务管理
        • cat 接口的命令行使用
      • 日志记录
      • 实时bigdesk方案
      • cerebro
      • zabbix trapper方案
    • ES在运维监控领域的其他玩法
      • percolator接口
      • watcher报警
      • ElastAlert
      • 时序数据库
      • Grafana
      • juttle
      • Etsy的Kale异常检测
  • Kibana 5
    • 安装、配置和运行
    • 生产环境部署
    • discover功能
    • 各visualize功能
      • area
      • table
      • line
      • markdown
      • metric
      • pie
      • tile map
      • vertical bar
    • dashboard功能
    • timelion 介绍
    • console 介绍
    • setting功能
    • 常用sub agg示例
      • 函数堆栈链分析
      • 分图统计
      • TopN的时序趋势图
      • 响应时间的百分占比趋势图
      • 响应时间的概率分布在不同时段的相似度对比
    • 源码解析
      • .kibana索引的数据结构
      • 主页入口
      • discover解析
      • visualize解析
      • dashboard解析
    • 插件
      • 可视化开发示例
      • 后端开发示例
      • 完整app开发示例
    • Kibana报表
  • 竞品对比
  • 推荐阅读
  • 合作名单
  • 捐赠名单
Powered by GitBook
On this page
  • 配置示例
  • 运行结果
  • 解释
  • Log4J 的另一种方案
  • 推荐阅读

Was this helpful?

  1. Logstash
  2. 插件配置
  3. codec配置

multiline

有些时候,应用程序调试日志会包含非常丰富的内容,为一个事件打印出很多行内容。这种日志通常都很难通过命令行解析的方式做分析。

而 logstash 正为此准备好了 codec/multiline 插件!

小贴士:multiline 插件也可以用于其他类似的堆栈式信息,比如 linux 的内核日志。

配置示例

input {
    stdin {
        codec => multiline {
            pattern => "^\["
            negate => true
            what => "previous"
        }
    }
}

运行结果

运行 logstash 进程,然后在等待输入的终端中输入如下几行数据:

[Aug/08/08 14:54:03] hello world
[Aug/08/09 14:54:04] hello logstash
    hello best practice
    hello raochenlin
[Aug/08/10 14:54:05] the end

你会发现 logstash 输出下面这样的返回:

{
    "@timestamp" => "2014-08-09T13:32:03.368Z",
       "message" => "[Aug/08/08 14:54:03] hello world\n",
      "@version" => "1",
          "host" => "raochenlindeMacBook-Air.local"
}
{
    "@timestamp" => "2014-08-09T13:32:24.359Z",
       "message" => "[Aug/08/09 14:54:04] hello logstash\n\n    hello best practice\n\n    hello raochenlin\n",
      "@version" => "1",
          "tags" => [
        [0] "multiline"
    ],
          "host" => "raochenlindeMacBook-Air.local"
}

你看,后面这个事件,在 "message" 字段里存储了三行数据!

小贴士:你可能注意到输出的事件中都没有最后的"the end"字符串。这是因为你最后输入的回车符 \n 并不匹配设定的 ^\[ 正则表达式,logstash 还得等下一行数据直到匹配成功后才会输出这个事件。

解释

其实这个插件的原理很简单,就是把当前行的数据添加到前面一行后面,,直到新进的当前行匹配 ^\[ 正则为止。

这个正则还可以用 grok 表达式,稍后你就会学习这方面的内容。

Log4J 的另一种方案

说到应用程序日志,log4j 肯定是第一个被大家想到的。使用 codec/multiline 也确实是一个办法。

推荐阅读

PreviousjsonNextcollectd

Last updated 5 years ago

Was this helpful?

不过,如果你本身就是开发人员,或者可以推动程序修改变更的话,logstash 还提供了另一种处理 log4j 的方式:。与 codec/multiline 不同,这个插件是直接调用了 org.apache.log4j.spi.LoggingEvent 处理 TCP 端口接收的数据。稍后章节会详细讲述 log4j 的用法。

input/log4j
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/java