ELKstack 中文指南
  • ELKstack 中文指南
  • Logstash
    • 入门示例
      • 下载安装
      • hello world
      • 配置语法
      • plugin的安装
      • 长期运行
    • 插件配置
      • input配置
        • file
        • stdin
        • syslog
        • tcp
      • codec配置
        • json
        • multiline
        • collectd
        • netflow
      • filter配置
        • date
        • grok
        • dissect
        • geoip
        • json
        • kv
        • metrics
        • mutate
        • ruby
        • split
        • elapsed
      • output配置
        • elasticsearch
        • email
        • exec
        • file
        • nagios
        • statsd
        • stdout
        • tcp
        • hdfs
    • 场景示例
      • nginx访问日志
      • nginx错误日志
      • postfix日志
      • ossec日志
      • windows系统日志
      • Java日志
      • MySQL慢查询日志
    • 性能与测试
      • generator方式
      • 监控方案
        • logstash-input-heartbeat方式
        • jmx启动参数方式
        • API方式
    • 扩展方案
      • 通过redis传输
      • 通过kafka传输
      • AIX 平台上的logstash-forwarder-java
      • rsyslog
      • nxlog
      • heka
      • fluent
      • Message::Passing
    • 源码解析
      • pipeline流程
      • Event的生成
    • 插件开发
      • utmp插件示例
  • Beats
    • filebeat
    • packetbeat网络流量分析
    • metricbeat
    • winlogbeat
  • ElasticSearch
    • 架构原理
      • segment、buffer和translog对实时性的影响
      • segment merge对写入性能的影响
      • routing和replica的读写过程
      • shard的allocate控制
      • 自动发现的配置
    • 接口使用示例
      • 增删改查操作
      • 搜索请求
      • Painless脚本
      • reindex接口
    • 性能优化
      • bulk提交
      • gateway配置
      • 集群状态维护
      • 缓存
      • fielddata
      • curator工具
      • profile接口
    • rally测试方案
    • 多集群互联
    • 别名的应用
    • 映射与模板的定制
    • puppet-elasticsearch模块的使用
    • 计划内停机升级的操作流程
    • 镜像备份
    • rollover和shrink
    • Ingest节点
    • Hadoop 集成
      • spark streaming交互
    • 权限管理
      • Shield
      • Search-Guard 在 Elasticsearch 2.x 上的运用
    • 监控方案
      • 监控相关接口
        • 集群健康状态
        • 节点状态
        • 索引状态
        • 任务管理
        • cat 接口的命令行使用
      • 日志记录
      • 实时bigdesk方案
      • cerebro
      • zabbix trapper方案
    • ES在运维监控领域的其他玩法
      • percolator接口
      • watcher报警
      • ElastAlert
      • 时序数据库
      • Grafana
      • juttle
      • Etsy的Kale异常检测
  • Kibana 5
    • 安装、配置和运行
    • 生产环境部署
    • discover功能
    • 各visualize功能
      • area
      • table
      • line
      • markdown
      • metric
      • pie
      • tile map
      • vertical bar
    • dashboard功能
    • timelion 介绍
    • console 介绍
    • setting功能
    • 常用sub agg示例
      • 函数堆栈链分析
      • 分图统计
      • TopN的时序趋势图
      • 响应时间的百分占比趋势图
      • 响应时间的概率分布在不同时段的相似度对比
    • 源码解析
      • .kibana索引的数据结构
      • 主页入口
      • discover解析
      • visualize解析
      • dashboard解析
    • 插件
      • 可视化开发示例
      • 后端开发示例
      • 完整app开发示例
    • Kibana报表
  • 竞品对比
  • 推荐阅读
  • 合作名单
  • 捐赠名单
Powered by GitBook
On this page

Was this helpful?

  1. ElasticSearch
  2. Hadoop 集成

spark streaming交互

Apache Spark 是一个高性能集群计算框架,其中 Spark Streaming 作为实时批处理组件,因为其简单易上手的特性深受喜爱。在 es-hadoop 2.1.0 版本之后,也新增了对 Spark 的支持,使得结合 ES 和 Spark 成为可能。

目前最新版本的 es-hadoop 是 2.1.0-Beta4。安装如下:

wget http://d3kbcqa49mib13.cloudfront.net/spark-1.0.2-bin-cdh4.tgz
wget http://download.elasticsearch.org/hadoop/elasticsearch-hadoop-2.1.0.Beta4.zip

然后通过 ADD_JARS=../elasticsearch-hadoop-2.1.0.Beta4/dist/elasticsearch-spark_2.10-2.1.0.Beta4.jar 环境变量,把对应的 jar 包加入 Spark 的 jar 环境中。

下面是一段使用 spark streaming 接收 kafka 消息队列,然后写入 ES 的配置:

import org.apache.spark._
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import org.elasticsearch.spark.sql._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.Logging
import org.apache.log4j.{Level, Logger}

object Elastic {
  def main(args: Array[String]) {
    val numThreads = 1
    val zookeeperQuorum = "localhost:2181"
    val groupId = "test"
    val topic = Array("test").map((_, numThreads)).toMap
    val elasticResource = "apps/blog"

    val sc = new SparkConf()
                 .setMaster("local[*]")
                 .setAppName("Elastic Search Indexer App")

    sc.set("es.index.auto.create", "true")
    val ssc = new StreamingContext(sc, Seconds(10))
    ssc.checkpoint("checkpoint")
    val logs = KafkaUtils.createStream(ssc,
                                       zookeeperQuorum,
                                       groupId,
                                       topic,
                                       StorageLevel.MEMORY_AND_DISK_SER)
                         .map(_._2)

    logs.foreachRDD { rdd =>
      val sc = rdd.context
      val sqlContext = new SQLContext(sc)
      val log = sqlContext.jsonRDD(rdd)
      log.saveToEs(elasticResource)
    }

    ssc.start()
    ssc.awaitTermination()

  }
}

注意,代码中使用了 spark SQL 提供的 jsonRDD() 方法,如果在对应的 kafka topic 里的数据,本身并不是已经处理好了的 JSON 数据的话,这里还需要自己写一写额外的处理函数,利用 cast class 来规范数据。

PreviousHadoop 集成Next权限管理

Last updated 5 years ago

Was this helpful?