ELKstack 中文指南
  • ELKstack 中文指南
  • Logstash
    • 入门示例
      • 下载安装
      • hello world
      • 配置语法
      • plugin的安装
      • 长期运行
    • 插件配置
      • input配置
        • file
        • stdin
        • syslog
        • tcp
      • codec配置
        • json
        • multiline
        • collectd
        • netflow
      • filter配置
        • date
        • grok
        • dissect
        • geoip
        • json
        • kv
        • metrics
        • mutate
        • ruby
        • split
        • elapsed
      • output配置
        • elasticsearch
        • email
        • exec
        • file
        • nagios
        • statsd
        • stdout
        • tcp
        • hdfs
    • 场景示例
      • nginx访问日志
      • nginx错误日志
      • postfix日志
      • ossec日志
      • windows系统日志
      • Java日志
      • MySQL慢查询日志
    • 性能与测试
      • generator方式
      • 监控方案
        • logstash-input-heartbeat方式
        • jmx启动参数方式
        • API方式
    • 扩展方案
      • 通过redis传输
      • 通过kafka传输
      • AIX 平台上的logstash-forwarder-java
      • rsyslog
      • nxlog
      • heka
      • fluent
      • Message::Passing
    • 源码解析
      • pipeline流程
      • Event的生成
    • 插件开发
      • utmp插件示例
  • Beats
    • filebeat
    • packetbeat网络流量分析
    • metricbeat
    • winlogbeat
  • ElasticSearch
    • 架构原理
      • segment、buffer和translog对实时性的影响
      • segment merge对写入性能的影响
      • routing和replica的读写过程
      • shard的allocate控制
      • 自动发现的配置
    • 接口使用示例
      • 增删改查操作
      • 搜索请求
      • Painless脚本
      • reindex接口
    • 性能优化
      • bulk提交
      • gateway配置
      • 集群状态维护
      • 缓存
      • fielddata
      • curator工具
      • profile接口
    • rally测试方案
    • 多集群互联
    • 别名的应用
    • 映射与模板的定制
    • puppet-elasticsearch模块的使用
    • 计划内停机升级的操作流程
    • 镜像备份
    • rollover和shrink
    • Ingest节点
    • Hadoop 集成
      • spark streaming交互
    • 权限管理
      • Shield
      • Search-Guard 在 Elasticsearch 2.x 上的运用
    • 监控方案
      • 监控相关接口
        • 集群健康状态
        • 节点状态
        • 索引状态
        • 任务管理
        • cat 接口的命令行使用
      • 日志记录
      • 实时bigdesk方案
      • cerebro
      • zabbix trapper方案
    • ES在运维监控领域的其他玩法
      • percolator接口
      • watcher报警
      • ElastAlert
      • 时序数据库
      • Grafana
      • juttle
      • Etsy的Kale异常检测
  • Kibana 5
    • 安装、配置和运行
    • 生产环境部署
    • discover功能
    • 各visualize功能
      • area
      • table
      • line
      • markdown
      • metric
      • pie
      • tile map
      • vertical bar
    • dashboard功能
    • timelion 介绍
    • console 介绍
    • setting功能
    • 常用sub agg示例
      • 函数堆栈链分析
      • 分图统计
      • TopN的时序趋势图
      • 响应时间的百分占比趋势图
      • 响应时间的概率分布在不同时段的相似度对比
    • 源码解析
      • .kibana索引的数据结构
      • 主页入口
      • discover解析
      • visualize解析
      • dashboard解析
    • 插件
      • 可视化开发示例
      • 后端开发示例
      • 完整app开发示例
    • Kibana报表
  • 竞品对比
  • 推荐阅读
  • 合作名单
  • 捐赠名单
Powered by GitBook
On this page

Was this helpful?

  1. ElasticSearch
  2. ES在运维监控领域的其他玩法

时序数据库

之前已经介绍过,ES 默认存储数据时,是有索引数据、_all 全文索引数据、_source JSON 字符串三份的。其中,索引数据由于倒排索引的结构,压缩比非常高。因此,在某些特定环境和需求下,可以只保留索引数据,以极小的容量代价,换取 ES 灵活的数据结构和聚合统计功能。

在监控系统中,对监控项和监控数据的设计一般是这样:

metric_path value timestamp (Graphite 设计) { "host": "Host name 1", "key": "item_key", "value": "33", "clock": 1381482894 } (Zabbix 设计)

这些设计有个共同点,数据是二维平面的。以最简单的访问请求状态监控为例,一次请求,可能转换出来的 metric_path 或者说 key 就有:{city,isp,host,upstream}.{urlpath...}.{status,rt,ut,size,speed} 这么多种。假设 urlpath 有 1000 个,就是 20000 个组合。意味着需要发送 20000 条数据,做 20000 次存储。

而在 ES 里,这就是实实在在 1000 条日志。而且在多条日志的时候,因为词元的相对固定,压缩比还会更高。所以,使用 ES 来做时序监控数据的存储和查询,是完全可行的办法。

对时序数据,关键就是定义缩减数据重复。template 示例如下:

{
  "order" : 2,
  "template" : "logstash-monit-*",
  "settings" : {
  },
  "mappings" : {
    "_default_" : {
      "_source" : {
        "enabled" : false
      },
      "_all" : {
        "enabled" : false
      }
    }
  },
  "aliases" : { }
}

如果有些字段,是完全不用 Query ,只参加 Aggregation 的,还可以设置:

      "properties" : {
        "sid" : {
          "index" : "no",
          "type" : "keyword"
        }
      },
PreviousElastAlertNextGrafana

Last updated 5 years ago

Was this helpful?

关于 Elasticsearch 用作 rrd 用途,与 MongoDB 等其他工具的性能测试与对比,可以阅读腾讯工程师写的系列文章:

http://segmentfault.com/a/1190000002690600