Prometheus监控
  • 介绍
  • 全书组织
  • Part I - Prometheus基础
    • 第1章 天降奇兵
      • Prometheus简介
      • 初识Prometheus
        • 安装Prometheus Server
        • 使用Node Exporter采集主机数据
        • 使用PromQL查询监控数据
        • 监控数据可视化
      • 任务和实例
      • Prometheus核心组件
      • 小结
    • 第2章 探索PromQL
      • 理解时间序列
      • Metrics类型
      • 初识PromQL
      • PromQL操作符
      • PromQL聚合操作
      • PromQL内置函数
      • 在HTTP API中使用PromQL
      • 最佳实践:4个黄金指标和USE方法
      • 小结
    • 第3章 Prometheus告警处理
      • Prometheus告警简介
      • 自定义Prometheus告警规则
      • 部署AlertManager
      • Alertmanager配置概述
      • 基于标签的告警处理路由
      • 使用Receiver接收告警信息
        • 集成邮件系统
        • 集成Slack
        • 集成企业微信
        • 集成钉钉:基于Webhook的扩展
      • 告警模板详解
      • 屏蔽告警通知
      • 使用Recoding Rules优化性能
      • 小结
  • Part II - Prometheus进阶
    • 第4章 Exporter详解
      • Exporter是什么
      • 常用Exporter
        • 容器监控:cAdvisor
        • 监控MySQL运行状态:MySQLD Exporter
        • 网络探测:Blackbox Exporter
      • 使用Java自定义Exporter
        • 使用Client Java构建Exporter程序
        • 在应用中内置Prometheus支持
      • 小结
    • 第5章 数据与可视化
      • 使用Console Template
      • Grafana的基本概念
      • Grafana与数据可视化
        • 变化趋势:Graph面板
        • 分布统计:Heatmap面板
        • 当前状态:SingleStat面板
      • 模板化Dashboard
      • 小结
    • 第6章 集群与高可用
      • 本地存储
      • 远程存储
      • 联邦集群
      • Prometheus高可用
      • Alertmanager高可用
      • 小结
    • 第7章 Prometheus服务发现
      • Prometheus与服务发现
      • 基于文件的服务发现
      • 基于Consul的服务发现
      • 服务发现与Relabel
      • 小结
  • Part III - Prometheus实战
    • 第8章 监控Kubernetes
      • 初识Kubernetes
      • 部署Prometheus
      • Kubernetes下的服务发现
      • 监控Kubernetes集群
      • 基于Prometheus的弹性伸缩
      • 小结
    • 第9章 Prometheus Operator
      • 什么是Prometheus Operator
      • 使用Operator管理Prometheus
      • 使用Operator管理监控配置
      • 在Prometheus Operator中使用自定义配置
      • 小结
    • 参考资料
Powered by GitBook
On this page

Was this helpful?

  1. Part II - Prometheus进阶
  2. 第5章 数据与可视化

Grafana与数据可视化

PreviousGrafana的基本概念Next变化趋势:Graph面板

Last updated 5 years ago

Was this helpful?

在第1章的“初始Prometheus”部分,我们已经带领读者大致了解了Grafana的基本使用方式。对于Grafana而言,Prometheus就是一个用于存储监控样本数据的数据源(Data Source)通过使用PromQL查询特定Prometheus实例中的数据并且在Panel中实现可视化。

接下来,我们将带领读者了解如何通过Panel创建精美的可视化图表。

认识面板(Panel)

Panel是Grafana中最基本的可视化单元。每一种类型的面板都提供了相应的查询编辑器(Query Editor),让用户可以从不同的数据源(如Prometheus)中查询出相应的监控数据,并且以可视化的方式展现。

Grafana中所有的面板均以插件的形式进行使用,当前内置了5种类型的面板,分别是:Graph,Singlestat,Heatmap, Dashlist,Table以及Text。

其中像Graph这样的面板允许用户可视化任意多个监控指标以及多条时间序列。而Siglestat则必须要求查询结果为单个样本。Dashlist和Text相对比较特殊,它们与特定的数据源无关。

通过Grafana UI用户可以在一个Dashboard下添加Panel,点击Dashboard右上角的“Add Panel”按钮,如下所示,将会显示当前系统中所有可使用的Panel类型:

选择想要创建的面板类型即可。这里以Graph面板为例,创建Panel之后,并切换到编辑模式,就可以进入Panel的配置页面。对于一个Panel而言,一般来说会包含2个主要的配置选项:General(通用设置)、Metrics(度量指标)。其余的配置则根据Panel类型的不同而不同。

在通用设置中,除了一些Panel的基本信息以外,最主要的能力就是定义动态Panel的能力,这部分内容会在本章的“模板化Dashboard”小结中详细介绍。

对于使用Prometheus作为数据源的用户,最主要的需要了解的就是Metrics设置的使用。在Metric选项中可以定义了Grafana从哪些数据源中查询样本数据。Data Source中指定当前查询的数据源,Grafana会加载当前组织中添加的所有数据源。其中还会包含两个特殊的数据源:Mixed和Grafana。 Mixed用于需要从多个数据源中查询和渲染数据的场景,Grafana则用于需要查询Grafana自身状态时使用。

当选中数据源时,Panel会根据当前数据源类型加载不同的Query Editor界面。这里我们主要介绍Prometheus Query Editor,如下所示,当选中的数据源类型为Prometheus时,会显示如下界面:

Grafana提供了对PromQL的完整支持,在Query Editor中,可以添加任意个Query,并且使用PromQL表达式从Prometheus中查询相应的样本数据。

avg (irate(node_cpu{mode!='idle'}[2m])) without (cpu)

每个PromQL表达式都可能返回多条时间序列。Legend format用于控制如何格式化每条时间序列的图例信息。Grafana支持通过模板的方式,根据时间序列的标签动态生成图例名称,例如:使用表示使用当前时间序列中的instance标签的值作为图例名称:

{{instance}}-{{mode}}

当查询到的样本数据量非常大时可以导致Grafana渲染图标时出现一些性能问题,通过Min Step可以控制Prometheus查询数据时的最小步长(Step),从而减少从Prometheus返回的数据量。

Resolution选项,则可以控制Grafana自身渲染的数据量。例如,如果Resolution的值为1/10,Grafana会将Prometeus返回的10个样本数据合并成一个点。因此Resolution越小可视化的精确性越高,反之,可视化的精度越低。

Format as选项定义如何格式化Prometheus返回的样本数据。这里提供了3个选项:Table,Time Series和Heatmap,分别用于Tabel面板,Graph面板和Heatmap面板的数据可视化。

除此以外,Query Editor还提供了调试相关的功能,点击Query Inspector可以展开相关的调试面板:

在面板中,可以查看当前Prometheus返回的样本数据,用户也可以提供Mock数据渲染图像。

添加Panel
Query Editor
调试面板