Prometheus监控
  • 介绍
  • 全书组织
  • Part I - Prometheus基础
    • 第1章 天降奇兵
      • Prometheus简介
      • 初识Prometheus
        • 安装Prometheus Server
        • 使用Node Exporter采集主机数据
        • 使用PromQL查询监控数据
        • 监控数据可视化
      • 任务和实例
      • Prometheus核心组件
      • 小结
    • 第2章 探索PromQL
      • 理解时间序列
      • Metrics类型
      • 初识PromQL
      • PromQL操作符
      • PromQL聚合操作
      • PromQL内置函数
      • 在HTTP API中使用PromQL
      • 最佳实践:4个黄金指标和USE方法
      • 小结
    • 第3章 Prometheus告警处理
      • Prometheus告警简介
      • 自定义Prometheus告警规则
      • 部署AlertManager
      • Alertmanager配置概述
      • 基于标签的告警处理路由
      • 使用Receiver接收告警信息
        • 集成邮件系统
        • 集成Slack
        • 集成企业微信
        • 集成钉钉:基于Webhook的扩展
      • 告警模板详解
      • 屏蔽告警通知
      • 使用Recoding Rules优化性能
      • 小结
  • Part II - Prometheus进阶
    • 第4章 Exporter详解
      • Exporter是什么
      • 常用Exporter
        • 容器监控:cAdvisor
        • 监控MySQL运行状态:MySQLD Exporter
        • 网络探测:Blackbox Exporter
      • 使用Java自定义Exporter
        • 使用Client Java构建Exporter程序
        • 在应用中内置Prometheus支持
      • 小结
    • 第5章 数据与可视化
      • 使用Console Template
      • Grafana的基本概念
      • Grafana与数据可视化
        • 变化趋势:Graph面板
        • 分布统计:Heatmap面板
        • 当前状态:SingleStat面板
      • 模板化Dashboard
      • 小结
    • 第6章 集群与高可用
      • 本地存储
      • 远程存储
      • 联邦集群
      • Prometheus高可用
      • Alertmanager高可用
      • 小结
    • 第7章 Prometheus服务发现
      • Prometheus与服务发现
      • 基于文件的服务发现
      • 基于Consul的服务发现
      • 服务发现与Relabel
      • 小结
  • Part III - Prometheus实战
    • 第8章 监控Kubernetes
      • 初识Kubernetes
      • 部署Prometheus
      • Kubernetes下的服务发现
      • 监控Kubernetes集群
      • 基于Prometheus的弹性伸缩
      • 小结
    • 第9章 Prometheus Operator
      • 什么是Prometheus Operator
      • 使用Operator管理Prometheus
      • 使用Operator管理监控配置
      • 在Prometheus Operator中使用自定义配置
      • 小结
    • 参考资料
Powered by GitBook
On this page

Was this helpful?

  1. Part II - Prometheus进阶

第6章 集群与高可用

Prometheus内置了一个基于本地存储的时间序列数据库。在Prometheus设计上,使用本地存储可以降低Prometheus部署和管理的复杂度同时减少高可用(HA)带来的复杂性。 在默认情况下,用户只需要部署多套Prometheus,采集相同的Targets即可实现基本的HA。同时由于Promethus高效的数据处理能力,单个Prometheus Server基本上能够应对大部分用户监控规模的需求。

当然本地存储也带来了一些不好的地方,首先就是数据持久化的问题,特别是在像Kubernetes这样的动态集群环境下,如果Promthues的实例被重新调度,那所有历史监控数据都会丢失。 其次本地存储也意味着Prometheus不适合保存大量历史数据(一般Prometheus推荐只保留几周或者几个月的数据)。最后本地存储也导致Prometheus无法进行弹性扩展。为了适应这方面的需求,Prometheus提供了remote_write和remote_read的特性,支持将数据存储到远端和从远端读取数据。通过将监控与数据分离,Prometheus能够更好地进行弹性扩展。

除了本地存储方面的问题,由于Prometheus基于Pull模型,当有大量的Target需要采样本时,单一Prometheus实例在数据抓取时可能会出现一些性能问题,联邦集群的特性可以让Prometheus将样本采集任务划分到不同的Prometheus实例中,并且通过一个统一的中心节点进行聚合,从而可以使Prometheuse可以根据规模进行扩展。

除了讨论Prometheus自身的高可用,Alertmanager作为Promthues体系中的告警处理中心,本章的最后部分会讨论如何实现Alertmanager的高可用部署。

本章的主要内容:

  • Prometheus本地存储机制

  • Prometheus的远程存储机制

  • Prometheus联邦集群

  • Prometheus高可用部署架构

  • Alertmanager高可用部署架构

Previous小结Next本地存储

Last updated 5 years ago

Was this helpful?