Prometheus监控
  • 介绍
  • 全书组织
  • Part I - Prometheus基础
    • 第1章 天降奇兵
      • Prometheus简介
      • 初识Prometheus
        • 安装Prometheus Server
        • 使用Node Exporter采集主机数据
        • 使用PromQL查询监控数据
        • 监控数据可视化
      • 任务和实例
      • Prometheus核心组件
      • 小结
    • 第2章 探索PromQL
      • 理解时间序列
      • Metrics类型
      • 初识PromQL
      • PromQL操作符
      • PromQL聚合操作
      • PromQL内置函数
      • 在HTTP API中使用PromQL
      • 最佳实践:4个黄金指标和USE方法
      • 小结
    • 第3章 Prometheus告警处理
      • Prometheus告警简介
      • 自定义Prometheus告警规则
      • 部署AlertManager
      • Alertmanager配置概述
      • 基于标签的告警处理路由
      • 使用Receiver接收告警信息
        • 集成邮件系统
        • 集成Slack
        • 集成企业微信
        • 集成钉钉:基于Webhook的扩展
      • 告警模板详解
      • 屏蔽告警通知
      • 使用Recoding Rules优化性能
      • 小结
  • Part II - Prometheus进阶
    • 第4章 Exporter详解
      • Exporter是什么
      • 常用Exporter
        • 容器监控:cAdvisor
        • 监控MySQL运行状态:MySQLD Exporter
        • 网络探测:Blackbox Exporter
      • 使用Java自定义Exporter
        • 使用Client Java构建Exporter程序
        • 在应用中内置Prometheus支持
      • 小结
    • 第5章 数据与可视化
      • 使用Console Template
      • Grafana的基本概念
      • Grafana与数据可视化
        • 变化趋势:Graph面板
        • 分布统计:Heatmap面板
        • 当前状态:SingleStat面板
      • 模板化Dashboard
      • 小结
    • 第6章 集群与高可用
      • 本地存储
      • 远程存储
      • 联邦集群
      • Prometheus高可用
      • Alertmanager高可用
      • 小结
    • 第7章 Prometheus服务发现
      • Prometheus与服务发现
      • 基于文件的服务发现
      • 基于Consul的服务发现
      • 服务发现与Relabel
      • 小结
  • Part III - Prometheus实战
    • 第8章 监控Kubernetes
      • 初识Kubernetes
      • 部署Prometheus
      • Kubernetes下的服务发现
      • 监控Kubernetes集群
      • 基于Prometheus的弹性伸缩
      • 小结
    • 第9章 Prometheus Operator
      • 什么是Prometheus Operator
      • 使用Operator管理Prometheus
      • 使用Operator管理监控配置
      • 在Prometheus Operator中使用自定义配置
      • 小结
    • 参考资料
Powered by GitBook
On this page

Was this helpful?

  1. Part I - Prometheus基础
  2. 第1章 天降奇兵
  3. 初识Prometheus

使用PromQL查询监控数据

Previous使用Node Exporter采集主机数据Next监控数据可视化

Last updated 5 years ago

Was this helpful?

Prometheus UI是Prometheus内置的一个可视化管理界面,通过Prometheus UI用户能够轻松的了解Prometheus当前的配置,监控任务运行状态等。 通过Graph面板,用户还能直接使用PromQL实时查询监控数据:

切换到Graph面板,用户可以使用PromQL表达式查询特定监控指标的监控数据。如下所示,查询主机负载变化情况,可以使用关键字node_load1可以查询出Prometheus采集到的主机负载的样本数据,这些样本数据按照时间先后顺序展示,形成了主机负载随时间变化的趋势图表:

PromQL是Prometheus自定义的一套强大的数据查询语言,除了使用监控指标作为查询关键字以为,还内置了大量的函数,帮助用户进一步对时序数据进行处理。例如使用rate()函数,可以计算在单位时间内样本数据的变化情况即增长率,因此通过该函数我们可以近似的通过CPU使用时间计算CPU的利用率:

rate(node_cpu[2m])

这时如果要忽略是哪一个CPU的,只需要使用without表达式,将标签CPU去除后聚合数据即可:

avg without(cpu) (rate(node_cpu[2m]))

那如果需要计算系统CPU的总体使用率,通过排除系统闲置的CPU使用率即可获得:

1 - avg without(cpu) (rate(node_cpu{mode="idle"}[2m]))

通过PromQL我们可以非常方便的对数据进行查询,过滤,以及聚合,计算等操作。通过这些丰富的表达书语句,监控指标不再是一个单独存在的个体,而是一个个能够表达出正式业务含义的语言。

Graph Query
主机负载情况
系统进程的CPU使用率
系统各mode的CPU使用率
系统CPU使用率