Linkerd
注意:Linkerd最初版本是使用Scala开发的,现在已开始开发Linkerd2,使用Go语言开发,该公司的另一款轻量级Service Mesh conduit也寿终正寝,合并入Linkerd 2.0,详见Conduit 0.5发布—以及R.I.P. Conduit。
Linkerd是一个用于云原生应用的开源、可扩展的service mesh(一般翻译成服务网格,还有一种说法叫”服务啮合层“,见Istio:用于微服务的服务啮合层)。
Linkerd是什么
Linkerd的出现是为了解决像twitter、google这类超大规模生产系统的复杂性问题。Linkerd不是通过控制服务之间的通信机制来解决这个问题,而是通过在服务实例之上添加一个抽象层来解决的。
Linkerd负责跨服务通信中最困难、易出错的部分,包括延迟感知、负载平衡、连接池、TLS、仪表盘、请求路由等——这些都会影响应用程序伸缩性、性能和弹性。
如何运行
Linkerd作为独立代理运行,无需特定的语言和库支持。应用程序通常会在已知位置运行linkerd实例,然后通过这些实例代理服务调用——即不是直接连接到目标服务,服务连接到它们对应的linkerd实例,并将它们视为目标服务。
在该层上,linkerd应用路由规则,与现有服务发现机制通信,对目标实例做负载均衡——与此同时调整通信并报告指标。
通过延迟调用linkerd的机制,应用程序代码与以下内容解耦:
生产拓扑
服务发现机制
负载均衡和连接管理逻辑
应用程序也将从一致的全局流量控制系统中受益。这对于多语言应用程序尤其重要,因为通过库来实现这种一致性是非常困难的。
Linkerd实例可以作为sidecar(既为每个应用实体或每个主机部署一个实例)来运行。 由于linkerd实例是无状态和独立的,因此它们可以轻松适应现有的部署拓扑。它们可以与各种配置的应用程序代码一起部署,并且基本不需要去协调它们。
详解
Linkerd 的基于 Kubernetes 的 Service Mesh 部署方式是使用 Kubernetes 中的 DaemonSet 资源对象,如下图所示。
这样 Kubernetes 集群中的每个节点都会运行一个 Linkerd 的 Pod。
但是这样做就会有几个问题:
节点上的应用如何发现其所在节点上的 Linkerd 呢?
节点间的 Linkerd 如何路由的呢?
Linkerd 如何将接收到的流量路由到正确的目的应用呢?
如何对应用的路有做细粒度的控制?
这几个问题在 Buoyant 公司的这篇博客中都有解答:A Service Mesh for Kubernetes, Part II: Pods are great until they’re not,我们下面将简要的回答上述问题。
节点上的应用如何发现其所在节点上的 Linkerd 呢?
简而言之,是使用环境变量的方式,如在应用程序中注入环境变量 http_proxy
:
这要求应用程序必须支持该环境变量,为应用程序所在的 Pod 设置了一个代理,实际上对于每种不同的协议 Linkerd 都监听不同的端口。
4140 for HTTP
4240 for HTTP/2
4340 for gRPC
关于 Linkerd 作为 Service Mesh 的详细配置请参考 serivcemesh.yml。
节点间的 Linkerd 如何路由的以及 Linkerd 如何将接收到的流量路由到正确的目的应用呢?
通过 transformer 来确定节点间的 Linkerd 路由,参考下面的配置:
Router 定义 Linkerd 如何实际地处理流量。Router 监听请求并在这些请求上应用路有规则,代理这些请求到正确的目的地。Router 是与协议相关的。对于每个 Router 都需要定义一个 incoming router 和一个 outcoming router。预计该应用程序将流量发送到 outcoming router,该 outcoming router 将其代理到目标服务节点上运行的 Linkerd 的 incoming router。Incoming router 后将请求代理给目标应用程序本身。我们还定义了 HTTP 和 HTTP/2 incoming router,它们充当 Ingress controller 并基于 Ingress 资源进行路由。
如何对路由规则做细粒度的控制呢?
路由规则配置是在 namerd 中进行的,例如:
Namerd 中存储了很多 dtab 配置,通过这些配置来管理路有规则,实现微服务的流量管理。
如果将 Linkerd 作为边缘节点还可以充当 Ingress controller,如下图所示。
Linkerd 自己最令人称道的是它在每台主机上只安装一个 Pod,如果使用 Sidecar 模式会为每个应用程序示例旁都运行一个容器,这样会导致过多的资源消耗。Squeezing blood from a stone: small-memory JVM techniques for microservice sidecars 这篇文章中详细说明了 Linkerd 的资源消耗与性能。
参考
Last updated